**CLUB İçerisinde Paylaşım Yaparken Dikkat Edilmesi Gereken Önemli Hususlar.** - Paylaşım yaparken Türkçe kurallarına olabildiğince uyulması, sorunuzun rahat anlaşılması ve en hızlı cevabı almanız adına, dikkat edilmesi gereken en önemli husustur. - Paylaşımlarınız da kibar ve yalın bir dil kullanmanız ve gerekirse resim ile eklenti yapmanız, doğru ve hızlı cevap almak adına önemli hususlardır. - Paylaşımları olabildiğince uygun bölümlere açarak, konu ile ilgili kişilerin daha hızlı görmesini sağlamak adına çok önemlidir. - Paylaşımlarda etiket kullanmak o sorunun daha sonra tekrar aranması adına çok önemlidir.
0 beğenilme 0 beğenilmeme
430 kez görüntülendi
Python kategorisinde (1,400 puan) tarafından

Merhabalar,
Nette bulmuş olduğum örnegi denemek için yola çıktım ve çalıştırma aşamalarında hatalar almaya başladım.
Burda bu hataları çözmek Python ile daha çok haşır neşir olmak ve uygulamayı çalıştırmayı planlıyorum.
Örneği aldığım link:https://github.com/celalaygar/car-counting-with-python

 

import cv2
import numpy as np

class Kordinat:
    def __init__(self,x,y):
        self.x=x
        self.y=y

class Sensor:
    def __init__(self,kordinat1,kordinat2,frame_weight,frame_lenght):
        self.kordinat1=kordinat1
        self.kordinat2=kordinat2
        self.frame_weight=frame_weight
        self.frame_lenght =frame_lenght
        self.mask=np.zeros((frame_weight,frame_lenght,1),np.uint8)*abs(self.kordinat2.y-self.kordinat1.y)
        self.full_mask_area=abs(self.kordinat2.x-self.kordinat1.x)
        cv2.rectangle(self.mask,(self.kordinat1.x,self.kordinat1.y),(self.kordinat2.x,self.kordinat2.y),(255),thickness=cv2.FILLED)
        self.stuation=False
        self.car_number_detected=0


video=cv2.VideoCapture("video1.mp4")
ret,frame=video.read()
cropped_image= frame[0:450, 0:450]
fgbg=cv2.createBackgroundSubtractorMOG2()
Sensor1 = Sensor(
    Kordinat(1, cropped_image.shape[1] - 35),
    Kordinat(340, cropped_image.shape[1] - 30),
    cropped_image.shape[0],
    cropped_image.shape[1])

kernel=np.ones((5,5),np.uint8)
font=cv2.FONT_HERSHEY_TRIPLEX
while (1):
    ret,frame=video.read()
    # resize frame
    cropped_image= frame[0:450, 0:450]
    # make morphology for frame
    deleted_background=fgbg.apply(cropped_image)
    opening_image=cv2.morphologyEx(deleted_background,cv2.MORPH_OPEN,kernel)
    ret,opening_image=cv2.threshold(opening_image,125,255,cv2.THRESH_BINARY)

    # detect moving anything
    _, cnts = cv2.findContours(opening_image,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
    result=cropped_image.copy()

    zeros_image=np.zeros((cropped_image.shape[0], cropped_image.shape[1], 1), np.uint8)

    # detect moving anything with loop
    for cnt in cnts:
        x,y,w,h=cv2.boundingRect(cnt)
        if (w>75 and h>75  and w<160 and h<160 ):
            cv2.rectangle(result,(x,y),(x+w,y+h),(255,0,0),thickness=2)
            cv2.rectangle(zeros_image,(x,y),(x+w,y+h),(255),thickness=cv2.FILLED)

    # detect whether there is car via bitwise_and
    mask1=np.zeros((zeros_image.shape[0],zeros_image.shape[1],1),np.uint8)
    mask_result=cv2.bitwise_or(zeros_image,zeros_image,mask=Sensor1.mask)
    white_cell_number=np.sum(mask_result==255)

    # detect to control whether car is passing under the red line sensor
    sensor_rate=white_cell_number/Sensor1.full_mask_area
    if sensor_rate>0:
        print("result : ",sensor_rate)
    # if car is passing under the red line sensor . red line sensor is yellow color.

    if (sensor_rate>=0.9 and  sensor_rate<3.1 and Sensor1.stuation==False):
        # draw the red line
        cv2.rectangle(result, (Sensor1.kordinat1.x, Sensor1.kordinat1.y), (Sensor1.kordinat2.x, Sensor1.kordinat2.y),
                      (0,255, 0,), thickness=cv2.FILLED)
        Sensor1.stuation = True
    elif (sensor_rate<0.9 and Sensor1.stuation==True) :
        # draw the red line
        cv2.rectangle(result, (Sensor1.kordinat1.x, Sensor1.kordinat1.y), (Sensor1.kordinat2.x, Sensor1.kordinat2.y),
                      (0, 0,255), thickness=cv2.FILLED)
        Sensor1.stuation = False
        Sensor1.car_number_detected+=1
    else :
        # draw the red line
        cv2.rectangle(result, (Sensor1.kordinat1.x, Sensor1.kordinat1.y), (Sensor1.kordinat2.x, Sensor1.kordinat2.y),
                      (0, 0, 255), thickness=cv2.FILLED)



    cv2.putText(result,str(Sensor1.car_number_detected),(Sensor1.kordinat1.x,150),font,2,(255,255,255))


    cv2.imshow("video", result)
    #cv2.imshow("mask_result", mask_result)
    #cv2.imshow("zeros_image", zeros_image)
    #cv2.imshow("opening_image", opening_image)

    k=cv2.waitKey(30) & 0xff
    if k == 27 :
        break

video.release()
cv2.destroyAllWindows()

 </code>

Calıştırdığımda cıkan hata.


Traceback (most recent call last):
File "C:/Users/Mehmet/PycharmProjects/OpenCV/counting_car_1.py", line 51, in x,y,w,h=cv2.boundingRect(cnt)

cv2.error: OpenCV(4.2.0) C:\projects\opencv-python\opencv\modules\imgproc\src\shapedescr.cpp:784: error: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S) in function 'cv::pointSetBoundingRect'


PyCharm
Python 3.8
Python-OpenCV 4.2.0.34

Bu hataları almamdaki sebep versiyon farkımı yoksa yazım hatasımı mevcut.
Not: Whatsapp ta sordugum soruda ki hatayı
_, cnts =
bu kısımda
cnts den sonra " ,__" nin fazla olmasıymış.

1 cevap

0 beğenilme 0 beğenilmeme
(4,270 puan) tarafından

Hocam cv de versiyon bile önem arzediyor. Doğrudan bir Örnek Üzerinden Gitmektense, adım adım ilerlemeyi tercih etmeniz daha dogru olur kanısındayım.
Hatayı araştırdığımızda aşağıdaki yere ulaştım.

https://stackoverflow.com/questions/54734538/opencv-assertion-failed-215assertion-failed-npoints-0-depth-cv-32

(1,400 puan) tarafından

Merhablar,
Sorunu cozdum.

Hatali olan.


, cnts,=cv2.findContours(opening_image,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)

Cozum:


cnts ,_ = cv2.findContours(opening_image,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)

Calışan kod aşağıdadır.
Video1.mp4 dosyası ise yukarda linkini verdiğim github icinde.


import cv2
import numpy as np

class Kordinat:
    def __init__(self,x,y):
        self.x=x
        self.y=y

class Sensor:
    def __init__(self,kordinat1,kordinat2,frame_weight,frame_lenght):
        self.kordinat1=kordinat1
        self.kordinat2=kordinat2
        self.frame_weight=frame_weight
        self.frame_lenght =frame_lenght
        self.mask=np.zeros((frame_weight,frame_lenght,1),np.uint8)*abs(self.kordinat2.y-self.kordinat1.y)
        self.full_mask_area=abs(self.kordinat2.x-self.kordinat1.x)
        cv2.rectangle(self.mask,(self.kordinat1.x,self.kordinat1.y),(self.kordinat2.x,self.kordinat2.y),(255),thickness=cv2.FILLED)
        self.stuation=False
        self.car_number_detected=0


video = cv2.VideoCapture("video1.mp4")
ret,frame = video.read()
cropped_image = frame[0:450, 0:450]
fgbg=cv2.createBackgroundSubtractorMOG2()
Sensor1 = Sensor(
    Kordinat(1, cropped_image.shape[1] - 35),
    Kordinat(340, cropped_image.shape[1] - 30),
    cropped_image.shape[0],
    cropped_image.shape[1])

kernel=np.ones((5,5),np.uint8)
font=cv2.FONT_HERSHEY_TRIPLEX

while (1):
    ret , frame=video.read()
    # resize frame
    cropped_image= frame[0:450, 0:450]

    # make morphology for frame
    deleted_background = fgbg.apply(cropped_image)
    opening_image = cv2.morphologyEx(deleted_background,cv2.MORPH_OPEN,kernel)
    ret , opening_image = cv2.threshold(opening_image,125,255,cv2.THRESH_BINARY)

    # detect moving anything
    cnts ,_  = cv2.findContours(opening_image,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
    result = cropped_image.copy()
    zeros_image = np.zeros((cropped_image.shape[0], cropped_image.shape[1], 1), np.uint8)

    # detect moving anything with loop
    for cnt in cnts:
        (x, y, w, h) = cv2.boundingRect(cnt)
        if (w > 75 and h > 75 and w < 160 and h < 160):
            cv2.rectangle(result, (x, y), (x + w, y + h), (255, 0, 0), thickness=2)
            cv2.rectangle(zeros_image, (x, y), (x + w, y + h), (255), thickness=cv2.FILLED)

    # detect whether there is car via bitwise_and
    mask1 = np.zeros((zeros_image.shape[0], zeros_image.shape[1], 1), np.uint8)
    mask_result = cv2.bitwise_or(zeros_image, zeros_image, mask=Sensor1.mask)
    white_cell_number = np.sum(mask_result == 255)


    # detect to control whether car is passing under the red line sensor
    sensor_rate = white_cell_number / Sensor1.full_mask_area
    if sensor_rate > 0:
        print("result : ", sensor_rate)
    # if car is passing under the red line sensor . red line sensor is yellow color.
    if (sensor_rate >= 0.9 and sensor_rate < 3.1 and Sensor1.stuation == False):
        # draw the red line
        cv2.rectangle(result, (Sensor1.kordinat1.x, Sensor1.kordinat1.y), (Sensor1.kordinat2.x, Sensor1.kordinat2.y),
                      (0, 255, 0,), thickness=cv2.FILLED)
        Sensor1.stuation = True
    elif (sensor_rate < 0.9 and Sensor1.stuation == True):
        # draw the red line
        cv2.rectangle(result, (Sensor1.kordinat1.x, Sensor1.kordinat1.y), (Sensor1.kordinat2.x, Sensor1.kordinat2.y),
                      (0, 0, 255), thickness=cv2.FILLED)
        Sensor1.stuation = False
        Sensor1.car_number_detected += 1
    else:
        # draw the red line
        cv2.rectangle(result, (Sensor1.kordinat1.x, Sensor1.kordinat1.y), (Sensor1.kordinat2.x, Sensor1.kordinat2.y),
                      (0, 0, 255), thickness=cv2.FILLED)

    cv2.putText(result, str(Sensor1.car_number_detected), (Sensor1.kordinat1.x, 150), font, 2, (255, 255, 255))

    # detect moving anything with loop
    cv2.imshow("video", result)
    k=cv2.waitKey(30) & 0xff
    if k == ord('q'):
        break

video.release()
cv2.destroyAllWindows()


...